Strengths of Fuzzy Techniques in Data Science - Sorbonne Université
Chapitre D'ouvrage Année : 2020

Strengths of Fuzzy Techniques in Data Science

Résumé

We show that many existing fuzzy methods for machine learning and data mining contribute to providing solutions to data science challenges, even though statistical approaches are often presented as major tools to cope with big data and modern user expectations of their exploitation. The multiple capacities of fuzzy and related knowledge representation methods make them inescapable to deal with various types of uncertainty inherent in all kinds of data.
Fichier principal
Vignette du fichier
ArticleVladik2017_3.pdf (356.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01676195 , version 1 (05-01-2018)

Identifiants

Citer

Bernadette Bouchon-Meunier. Strengths of Fuzzy Techniques in Data Science. Kosheleva, O.; Shary, S.P.; Xiang, G.; Zapatrin, R. Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy, etc. Methods and Their Applications, 835, Springer, pp.111-119, 2020, Studies in Computational Intelligence, 978-3-030-31041-7. ⟨10.1007/978-3-030-31041-7_6⟩. ⟨hal-01676195⟩
343 Consultations
1354 Téléchargements

Altmetric

Partager

More