ParkMaster: An in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments

Abstract : We present the design and implementation of ParkMaster, a system that leverages the ubiquitous smartphone to help drivers find parking spaces in the urban environment. ParkMas-ter estimates parking space availability using video gleaned from drivers' dash-mounted smartphones on the network's edge, uploading analytics about the street to the cloud in real time as participants drive. Novel lightweight parked-car localization algorithms enable the system to estimate each parked car's approximate location by fusing information from phone's camera, GPS, and inertial sensors, tracking and counting parked cars as they move through the driving car's camera frame of view. To visually calibrate the system, ParkMaster relies only on the size of well-known objects in the urban environment for on-the-go calibration. We implement and deploy ParkMaster on Android smartphones, uploading parking ana-lytics to the Azure cloud. On-the-road experiments in three different environments comprising Los Angeles, Paris and an Italian village measure the end-to-end accuracy of the sys-tem's parking estimates (close to 90%) as well as the amount of cellular data usage the system requires (less than one mega-byte per hour).
Type de document :
Communication dans un congrès
ACM/IEEE Symposium on Edge Computing, Oct 2017, San Jose, CA, United States. ACM, pp.16, 〈10.1145/3132211.3134452〉
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01680639
Contributeur : Giovanni Pau <>
Soumis le : mercredi 10 janvier 2018 - 23:20:37
Dernière modification le : vendredi 23 novembre 2018 - 09:51:15
Document(s) archivé(s) le : vendredi 4 mai 2018 - 16:21:41

Fichier

a16-grassi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Giulio Grassi, Paramvir Bahl, Kyle Jamieson, Giovanni Pau. ParkMaster: An in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments. ACM/IEEE Symposium on Edge Computing, Oct 2017, San Jose, CA, United States. ACM, pp.16, 〈10.1145/3132211.3134452〉. 〈hal-01680639〉

Partager

Métriques

Consultations de la notice

350

Téléchargements de fichiers

46