Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice - Sorbonne Université Access content directly
Journal Articles Nature Communications Year : 2018

Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice

Abstract

Dietary lipids favor the growth of the pathobiont Bilophila wadsworthia, but the relevance of this expansion in metabolic syndrome pathogenesis is poorly understood. Here, we showed that B. wadsworthia synergizes with high fat diet (HFD) to promote higher inflammation, intestinal barrier dysfunction and bile acid dysmetabolism, leading to higher glucose dysmetabolism and hepatic steatosis. Host-microbiota transcriptomics analysis reveal pathways, particularly butanoate metabolism, which may underlie the metabolic effects mediated by B. wadsworthia. Pharmacological suppression of B. wadsworthia-associated inflammation demonstrate the bacterium's intrinsic capacity to induce a negative impact on glycemic control and hepatic function. Administration of the probiotic Lactobacillus rhamnosus CNCM I-3690 limits B. wadsworthia-induced immune and metabolic impairment by limiting its expansion, reducing inflammation and reinforcing intestinal barrier. Our results suggest a new avenue for interventions against western diet-driven inflammatory and metabolic diseases.
Fichier principal
Vignette du fichier
s41467-018-05249-7.pdf (1.82 Mo) Télécharger le fichier
Origin Publication funded by an institution
Loading...

Dates and versions

hal-01960210 , version 1 (19-12-2018)

Licence

Identifiers

Cite

Jane Natividad, Bruno Lamas, Hang Phuong Pham, Marie-Laure Michel, Dominique Rainteau, et al.. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nature Communications, 2018, 9 (1), pp.2802. ⟨10.1038/s41467-018-05249-7⟩. ⟨hal-01960210⟩
411 View
144 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More