Complex-valued neural networks for fully-temporal micro-Doppler classification - Sorbonne Université
Communication Dans Un Congrès Année : 2019

Complex-valued neural networks for fully-temporal micro-Doppler classification

Frédéric Barbaresco
Jean-Yves Schneider
  • Fonction : Auteur
Matthieu Cord

Résumé

Micro-Doppler analysis commonly makes use of the log-scaled, real-valued spectrogram, and recent work involving deep learning architectures for classification are no exception. Some works in neighboring fields of research directly exploit the raw temporal signal, but do not handle complex numbers, which are inherent to radar IQ signals. In this paper, we propose a complex-valued, fully temporal neural network which simultaneously exploits the raw signal and the spectrogram by introducing a Fourier-like layer suitable to deep architectures. We show improved results under certain conditions on synthetic radar data compared to a real-valued counterpart.
Fichier principal
Vignette du fichier
brooks.pdf (785.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02290835 , version 1 (18-09-2019)

Identifiants

Citer

Daniel A Brooks, Olivier Schwander, Frédéric Barbaresco, Jean-Yves Schneider, Matthieu Cord. Complex-valued neural networks for fully-temporal micro-Doppler classification. 2019 20th International Radar Symposium (IRS), Jun 2019, Ulm, Germany. ⟨10.23919/IRS.2019.8768161⟩. ⟨hal-02290835⟩
133 Consultations
301 Téléchargements

Altmetric

Partager

More