Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting - Sorbonne Université
Article Dans Une Revue Nature Communications Année : 2018

Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting

Martin Sachse
Audrey Salles
Spencer Shorte
  • Fonction : Auteur
  • PersonId : 1014641

Résumé

The shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term 'one-dimensional' membrane wetting. We provide a theoretical model that describes the physical basis of one-dimensional wetting and show that this mechanism occurs in model membranes interacting with nanofibers, and in human cells interacting with extracellular matrix meshworks. We propose one-dimensional wetting as a new general principle driving the interaction of cells with their environment at the nanoscale that is diverted by meningococci during infection.

Domaines

Immunothérapie
Fichier principal
Vignette du fichier
s41467-018-06948-x.pdf (8.61 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-02390328 , version 1 (27-04-2020)

Identifiants

Citer

Arthur Charles-Orszag, Feng-Ching Tsai, Daria Bonazzi, Valeria Manriquez, Martin Sachse, et al.. Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. Nature Communications, 2018, 9 (1), ⟨10.1038/s41467-018-06948-x⟩. ⟨hal-02390328⟩
121 Consultations
29 Téléchargements

Altmetric

Partager

More