Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

The Vlasov-Ampère system and the Bernstein-Landau paradox *

Abstract : We study the Bernstein-Landau paradox in the collisionless motion of an electrostatic plasma in the presence of a constant external magnetic field. The Bernstein-Landau paradox consists in that in the presence of the magnetic field, the electric field and the charge density fluctuation have an oscillatory behavior in time. This is radically different from Landau damping, in the case without magnetic field, where the electric field tends to zero for large times. We consider this problem from a new point of view. Instead of analyzing the linear Vlasov-Poisson system, as it is usually done, we study the linear Vlasov-Ampère system. We formulate the Vlasov-Ampère system as a Schrödinger equation with a selfadjoint Vlasov-Ampère operator in the Hilbert space of states with finite energy. The Vlasov-Ampère operator has a complete set of orthonormal eigenfunctions, that include the Bernstein modes. The expansion of the solution of the Vlasov-Ampère system in the eigenfunctions shows the oscillatory behavior in time. We prove the convergence of the expansion under optimal conditions, assuming only that the initial state has finite energy. This solves a problem that was recently posed in the literature. The Bernstein modes are not complete. To have a complete system it is necessary to add eigenfunctions that are associated with eigenvalues at all the integer multiples of the cyclotron frequency. These special plasma oscillations actually exist on their own, without the excitation of the other modes. In the limit when the magnetic fields goes to zero the spectrum of the Vlasov-Ampère operator changes drastically from pure point to absolutely continuous in the orthogonal complement to its kernel, due to a sharp change on its domain. This explains the Bernstein-Landau paradox. Furthermore, we present numerical simulations that illustrate the Bernstein-Landau paradox.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [34 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-02494449
Contributor : Alexandre Rege Connect in order to contact the contributor
Submitted on : Friday, February 28, 2020 - 5:12:29 PM
Last modification on : Sunday, June 26, 2022 - 10:01:40 AM
Long-term archiving on: : Friday, May 29, 2020 - 5:41:11 PM

File

15-Vlasov-Ampere.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02494449, version 1

Citation

Frédérique Charles, Bruno Després, Alexandre Rege, Ricardo Weder. The Vlasov-Ampère system and the Bernstein-Landau paradox *. 2020. ⟨hal-02494449⟩

Share

Metrics

Record views

127

Files downloads

85