Automatic analysis of insurance reports through deep neural networks to identify severe claims - Sorbonne Université
Article Dans Une Revue Annals of Actuarial Science Année : 2021

Automatic analysis of insurance reports through deep neural networks to identify severe claims

Résumé

In this paper, we develop a methodology to automatically classify claims using the information contained in text reports (redacted at their opening). From this automatic analysis, the aim is to predict if a claim is expected to be particularly severe or not. The difficulty is the rarity of such extreme claims in the database, and hence the difficulty, for classical prediction techniques like logistic regression to accurately predict the outcome. Since data is unbalanced (too few observations are associated with a positive label), we propose different rebalance algorithm to deal with this issue. We discuss the use of different embedding methodologies used to process text data, and the role of the architectures of the networks.
Fichier principal
Vignette du fichier
neural-nouveau-mieux.pdf (608.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02570584 , version 1 (12-05-2020)

Identifiants

Citer

Isaac Cohen Sabban, Olivier Lopez, Yann Mercuzot. Automatic analysis of insurance reports through deep neural networks to identify severe claims. Annals of Actuarial Science, 2021, 16 (1), ⟨10.1017/S174849952100004X⟩. ⟨hal-02570584⟩
361 Consultations
485 Téléchargements

Altmetric

Partager

More