Skip to Main content Skip to Navigation
Journal articles

Mass-zero constrained molecular dynamics for electrode charges in simulations of electrochemical systems

Abstract : Classical molecular dynamics simulations have recently become a standard tool for the study of electrochemical systems. State-of-the-art approaches represent the electrodes as perfect conductors, modelling their responses to the charge distribution of electrolytes via the so-called fluctuating charge model. These fluctuating charges are additional degrees of freedom that, in a Born-Oppenheimer spirit, adapt instantaneously to changes in the environment to keep each electrode at a constant potential. Here we show that this model can be treated in the framework of constrained molecular dynamics, leading to a symplectic and time-reversible algorithm for the evolution of all the degrees of freedom of the system. The computational cost and the accuracy of the new method are similar to current alternative implementations of the model. The advantage lies in the accuracy and long term stability guaranteed by the formal properties of the algorithm and in the possibility to systematically introduce additional kinematic conditions of arbitrary number and form. We illustrate the performance of the constrained dynamics approach by enforcing the electroneutrality of the electrodes in a simple capacitor consisting of two graphite electrodes separated by a slab of liquid water.
Document type :
Journal articles
Complete list of metadata

Cited literature [42 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-02869824
Contributor : Hal Sorbonne Université Gestionnaire <>
Submitted on : Tuesday, June 16, 2020 - 12:09:23 PM
Last modification on : Wednesday, April 14, 2021 - 3:50:03 PM

File

manuscript_Coretti_mass-zero.p...
Files produced by the author(s)

Identifiers

Citation

A. Coretti, L. Scalfi, C. Bacon, B. Rotenberg, R. Vuilleumier, et al.. Mass-zero constrained molecular dynamics for electrode charges in simulations of electrochemical systems. Journal of Chemical Physics, American Institute of Physics, 2020, 152 (19), pp.194701. ⟨10.1063/5.0007192⟩. ⟨hal-02869824⟩

Share

Metrics

Record views

79

Files downloads

75