Wetting-Layer-Free AlGaN Quantum Dots for Ultraviolet Emitters - Sorbonne Université Access content directly
Journal Articles ACS Applied Nano Materials Year : 2020

Wetting-Layer-Free AlGaN Quantum Dots for Ultraviolet Emitters

Abstract

We exhibit both experimentally and theoretically a novel growth mode for the epi-taxy of AlGaN quantum dots (QD), where they are eventually produced without their usual surrounding wetting layer. If the generic evolution of QD is ruled by the elastic relaxation and capillary effects, evaporation occurs here on a time scale similar to that of growth. Using a dedicated surface diffusion model accounting for elasticity, wetting and anisotropy, we evidence numerically different kinetic regimes as a function of the evaporation flux, that rationalize the experimental outcome. The resulting QD are characterized by enhanced optical properties compared to the common QD with a wetting layer. These nanostructures are promising candidates for deep ultraviolet light emitting diodes.
Fichier principal
Vignette du fichier
Article-Evaporation-AcsApplNanoMat-ReReRevised.pdf (9.11 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02883981 , version 1 (29-06-2020)

Identifiers

Cite

Guido Schifani, Thomas Frisch, Julien Brault, Philippe Vennegues, Samuel Matta, et al.. Wetting-Layer-Free AlGaN Quantum Dots for Ultraviolet Emitters. ACS Applied Nano Materials, 2020, 3 (5), pp.4054-4060. ⟨10.1021/acsanm.9b02546⟩. ⟨hal-02883981⟩
120 View
146 Download

Altmetric

Share

Gmail Facebook X LinkedIn More