A FUNCTIONAL EQUATION WITH POLYNOMIAL SOLUTIONS AND APPLICATION TO NEURAL NETWORKS - Sorbonne Université
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2020

A FUNCTIONAL EQUATION WITH POLYNOMIAL SOLUTIONS AND APPLICATION TO NEURAL NETWORKS

Résumé

We construct and discuss a functional equation with contraction property. The solutions are real univariate polynomials. The series solving the natural fixed point iterations have immediate interpretation in terms of Neural Networks with recursive properties and controlled accuracy.
We construct and discuss a functional equation with contraction property. The solutions are real univariate polynomials. The series solving the natural fixed point iterations have immediate interpretation in terms of Neural Networks with recursive properties and controlled accuracy.
Fichier principal
Vignette du fichier
paper_hal.pdf (596.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02959678 , version 1 (07-10-2020)
hal-02959678 , version 2 (09-10-2020)
hal-02959678 , version 3 (24-11-2020)

Identifiants

Citer

Bruno Després, Matthieu Ancellin. A FUNCTIONAL EQUATION WITH POLYNOMIAL SOLUTIONS AND APPLICATION TO NEURAL NETWORKS. Comptes Rendus. Mathématique, 2020, Tome 358 (2020) no. 9-10, pp. 1059-1072, ⟨10.5802/CRMATH.124⟩. ⟨hal-02959678v3⟩
562 Consultations
372 Téléchargements

Altmetric

Partager

More