Identification des émotions chez des patients atteints de gliomes de bas grade versus accidents vasculaires cérébraux - Sorbonne Université
Journal Articles Revue Neurologique Year : 2013

Emotion identification in patients with low-grade glioma versus stroke

Identification des émotions chez des patients atteints de gliomes de bas grade versus accidents vasculaires cérébraux

Abstract

Introduction. Facial and vocal emotional expressions contribute to maintaining high-quality social relationships. Their identification can be disrupted by cerebral pathologies. Depending on whether they develop slowly, like low-grade gliomas (LGG), or suddenly, like strokes, cerebral lesions induce different processes of plasticity and reorganization. Method. We compare the facial, vocal, and intermodal identification of six emotions (joy, fear, anger, sadness, disgust, and neutral) in three groups: patients with LGG before and after resection, stroke patients, and control subjects. Results. Our findings reveal a preservation of emotion identification capabilities in preoperative LGG patients and a decline postoperatively, as well as a decrease in performance in stroke patients for negative emotions. The intermodal condition (simultaneous presentation of visual and auditory stimuli) improves the results across all groups and allows stroke patients to achieve results comparable to those of the control subjects. Conclusion. The variability in cerebral plasticity depending on the type and speed of lesion onset could explain the differences in results between the groups. Intermodality appears as a compensatory process.
Fichier principal
Vignette du fichier
DuBoullay(authors-version).pdf (742.28 Ko) Télécharger le fichier

Dates and versions

hal-03179430 , version 1 (23-05-2024)

Identifiers

Cite

V. Du Boullay, M. Plaza, L. Capelle, L. Chaby. Identification des émotions chez des patients atteints de gliomes de bas grade versus accidents vasculaires cérébraux. Revue Neurologique, 2013, 169 (3), pp.249-257. ⟨10.1016/j.neurol.2012.06.017⟩. ⟨hal-03179430⟩
37 View
36 Download

Altmetric

Share

More