HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

A lexical approach for identifying behavioural action sequences

Abstract : Animals display characteristic behavioural patterns when performing a task, such as the spiraling of a soaring bird or the surge-and-cast of a male moth searching for a female. Identifying such recurring sequences occurring rarely in noisy behavioural data is key to understanding the behavioural response to a distributed stimulus in unrestrained animals. Existing models seek to describe the dynamics of behaviour or segment individual locomotor episodes rather than to identify the rare and transient sequences of locomotor episodes that make up the behavioural response. To fill this gap, we develop a lexical, hierarchical model of behaviour. We designed an unsupervised algorithm called "BASS" to efficiently identify and segment recurring behavioural action sequences transiently occurring in long behavioural recordings. When applied to navigating larval zebrafish, BASS extracts a dictionary of remarkably long, non-Markovian sequences consisting of repeats and mixtures of slow forward and turn bouts. Applied to a novel chemotaxis assay, BASS uncovers chemotactic strategies deployed by zebrafish to avoid aversive cues consisting of sequences of fast large-angle turns and burst swims. In a simulated dataset of soaring gliders climbing thermals, BASS finds the spiraling patterns characteristic of soaring behaviour. In both cases, BASS succeeds in identifying rare action sequences in the behaviour deployed by freely moving animals. BASS can be easily incorporated into the pipelines of existing behavioural analyses across diverse species, and even more broadly used as a generic algorithm for pattern recognition in low-dimensional sequential data.
Document type :
Journal articles
Complete list of metadata

https://hal.sorbonne-universite.fr/hal-03521462
Contributor : Hal Sorbonne Université 5 Gestionnaire Connect in order to contact the contributor
Submitted on : Tuesday, January 11, 2022 - 3:48:48 PM
Last modification on : Friday, May 20, 2022 - 11:06:56 AM
Long-term archiving on: : Tuesday, April 12, 2022 - 7:38:37 PM

File

journal.pcbi.1009672.pdf
Publication funded by an institution

Identifiers

Citation

Gautam Reddy, Laura Desban, Hidenori Tanaka, Julian Roussel, Olivier Mirat, et al.. A lexical approach for identifying behavioural action sequences. PLoS Computational Biology, Public Library of Science, 2022, 18 (1), pp.e1009672. ⟨10.1371/journal.pcbi.1009672⟩. ⟨hal-03521462⟩

Share

Metrics

Record views

15

Files downloads

12