Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma
Résumé
Abstract Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, yet it remains refractory to systemic therapy. Elimination of senescent cells has emerged as a promising new treatment approach against cancer. Here, we investigated the contribution of senescent cells to GBM progression. Senescent cells were identified in patient and mouse GBMs. Partial removal of p16 Ink4a -expressing malignant senescent cells, which make up less than 7 % of the tumor, modified the tumor ecosystem and improved the survival of GBM-bearing mice. By combining single cell and bulk RNA sequencing, immunohistochemistry and genetic knockdowns, we identified the NRF2 transcription factor as a determinant of the senescent phenotype. Remarkably, our mouse senescent transcriptional signature and underlying mechanisms of senescence are conserved in patient GBMs, in whom higher senescence scores correlate with shorter survival times. These findings suggest that senolytic drug therapy may be a beneficial adjuvant therapy for patients with GBM.