A proof of concept of a machine learning algorithm to predict late-onset 21-hydroxylase deficiency in children with premature pubic hair - Sorbonne Université
Article Dans Une Revue (Data Paper) Journal of Steroid Biochemistry and Molecular Biology Année : 2022

A proof of concept of a machine learning algorithm to predict late-onset 21-hydroxylase deficiency in children with premature pubic hair

Héléna Agnani
  • Fonction : Auteur
Guillaume Bachelot
Bettina Ribault
  • Fonction : Auteur
Jean Fiet
  • Fonction : Auteur
Yves Le Bouc
  • Fonction : Auteur
Irène Netchine
  • Fonction : Auteur
Muriel Houang
  • Fonction : Auteur
Antonin Lamazière
Fichier principal
Vignette du fichier
S096007602200036X.pdf (603.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03972777 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Héléna Agnani, Guillaume Bachelot, Thibaut Eguether, Bettina Ribault, Jean Fiet, et al.. A proof of concept of a machine learning algorithm to predict late-onset 21-hydroxylase deficiency in children with premature pubic hair. Journal of Steroid Biochemistry and Molecular Biology, 2022, 220, pp.106085. ⟨10.1016/j.jsbmb.2022.106085⟩. ⟨hal-03972777⟩
54 Consultations
9 Téléchargements

Altmetric

Partager

More