Leveraging Analog Quantum Computing with Neutral Atoms for Solvent Configuration Prediction in Drug Discovery - Sorbonne Université
Article Dans Une Revue Physical Review Research Année : 2024

Leveraging Analog Quantum Computing with Neutral Atoms for Solvent Configuration Prediction in Drug Discovery

Résumé

We introduce quantum algorithms able to sample equilibrium water solvent molecules configurations within proteins thanks to analog quantum computing. To do so, we combine a quantum placement strategy to the 3D Reference Interaction Site Model (3D-RISM), an approach capable of predicting continuous solvent distributions. The intrinsic quantum nature of such coupling guarantees molecules not to be placed too close to each other, a constraint usually imposed by hand in classical approaches. We present first a full quantum adiabatic evolution model that uses a local Rydberg Hamiltonian to cast the general problem into an anti-ferromagnetic Ising model. Its solution, an NP-hard problem in classical computing, is embodied into a Rydberg atom array Quantum Processing Unit (QPU). Following a classical emulator implementation, a QPU portage allows to experimentally validate the algorithm performances on an actual quantum computer. As a perspective of use on next generation devices, we emulate a second hybrid quantum-classical version of the algorithm. Such a variational quantum approach (VQA) uses a classical Bayesian minimization routine to find the optimal laser parameters. Overall, these Quantum-3D-RISM (Q-3D-RISM) algorithms open a new route towards the application of analog quantum computing in molecular modelling and drug design.
Fichier principal
Vignette du fichier
PhysRevResearch.6.043020.pdf (2.93 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04214318 , version 1 (05-10-2024)

Licence

Identifiants

Citer

M. D’arcangelo, L.-P. Henry, L Henriet, D. Loco, Nicolaï Gouraud, et al.. Leveraging Analog Quantum Computing with Neutral Atoms for Solvent Configuration Prediction in Drug Discovery. Physical Review Research, 2024, 6 (4), pp.043020. ⟨10.1103/PhysRevResearch.6.043020⟩. ⟨hal-04214318⟩
163 Consultations
15 Téléchargements

Altmetric

Partager

More