Analysis of the numerical One-Step method for the study applied on bio electromagnetics
Abstract
The development of wireless technologies arises important questions about the effects of the wave propagation in the human body. To study accurately these effects, we have to use rigorous numerical methods. In this paper, we present and analyze the One-Step time domain method. This method, which was proposed by De Raedt [Phys Rev E 67(056706):1-12, 2003] for lossless media, is known to be unconditionally stable and so it can be used for applications for which the Courant-Friedrich-Levy (CFL) stability condition can be a limiting factor, e.g., for bioelectromagnetic applications. The numerical dispersion and the insertion of lossy media in the One-Step method are evaluated. The perfectly matched layer (PML) absorbing conditions are also introduced in our study.