k-sums in abelian groups - Sorbonne Université Access content directly
Preprints, Working Papers, ... Year : 2011

k-sums in abelian groups

Abstract

Given a finite subset $A$ of an abelian group $G$, we study the set $k \wedge A$ of all sums of $k$ distinct elements of $A$. In this paper, we prove that $|k \wedge A| \geq |A|$ for all $k \in \{2,\dots,|A|-2\}$, unless $k \in \{2,|A|-2\}$ and $A$ is a coset of an elementary $2$-subgroup of $G$. Furthermore, we characterise those finite sets $A \subseteq G$ for which $|k \wedge A|=|A|$ for some $k \in \{2,\dots,|A|-2\}$. This result answers a question of Diderrich. Our proof relies on an elementary property of proper edge-colourings of the complete graph.
Fichier principal
Vignette du fichier
ksums_in_abelian_groups.pdf (155.35 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00630441 , version 1 (10-10-2011)
hal-00630441 , version 2 (26-06-2012)

Identifiers

Cite

Benjamin Girard, Simon Griffiths, Yahya Ould Hamidoune. k-sums in abelian groups. 2011. ⟨hal-00630441v1⟩
127 View
247 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More