Do molecular conductances correlate with electrochemical rate constants? Experimental insights. - Sorbonne Université
Journal Articles Journal of the American Chemical Society Year : 2011

Do molecular conductances correlate with electrochemical rate constants? Experimental insights.

Abstract

We measured single-molecule conductances for three different redox systems self-assembled onto gold by the STMBJ method and compared them with electrochemical heterogeneous rate constants determined by ultrafast voltammetry. It was observed that fast systems indeed give higher conductance. Monotonous dependency of conductance on potential reveals that large molecular fluctuations prevent the molecular redox levels to lie in between the Fermi levels of the electrodes in the nanogap configuration. Electronic coupling factors for both experimental approaches were therefore evaluated based on the superexchange mechanism theory. The results suggest that coupling is surprisingly on the same order of magnitude or even larger in conductance measurements whereas electron transfer occurs on larger distances than in transient electrochemistry.
No file

Dates and versions

hal-00830954 , version 1 (06-06-2013)

Identifiers

Cite

Xiao-Shun Zhou, Ling Liu, Philippe Fortgang, Anne-Sophie Lefevre, Anna Serra-Muns, et al.. Do molecular conductances correlate with electrochemical rate constants? Experimental insights.. Journal of the American Chemical Society, 2011, 133 (19), pp.7509-7516. ⟨10.1021/ja201042h⟩. ⟨hal-00830954⟩
211 View
0 Download

Altmetric

Share

More