Derivation of a Hele-Shaw type system from a cell model with active motion
Résumé
We formulate a Hele-Shaw type free boundary problem for a tumor growing under the combined effects of pressure forces, cell multiplication and active motion, the latter being the novelty of the present paper. This new ingredient is considered here as a standard diffusion process. The free boundary model is derived from a description at the cell level using the asymptotic of a stiff pressure limit. Compared to the case when active motion is neglected, the pressure satisfies the same complementarity Hele-Shaw type formula. However, the cell density is smoother (Lipschitz continuous), while there is a deep change in the free boundary velocity, which is no longer given by the gradient of the pressure, because some kind of \lq mushy region' prepares the tumor invasion.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...