Skip to Main content Skip to Navigation
Journal articles

Stochastic Rotation Dynamics simulation of electro-osmosis

Abstract : Stochastic Rotation Dynamics (SRD) is a mesoscale simulation technique that captures hydrodynamic couplings in simple and complex fluids. It can be used in various hydrodynamic regimes and it is not restricted to specific geometries. We show here that SRD using the collisional coupling approach to capture momentum transfer between the semi-implicit solvent and the explicit counterions, is able to describe electro-kinetic effects, i.e. coupled electrostatic and hydrodynamic phenomena occurring at charged solid–liquid interfaces. The method is first validated for electro-osmosis in the simple case of a slit pore without added salt, for which an analytical solution of the Helmholtz–Smoluchowski theory is known, in a physical regime where this mean-field theory is valid. We then discuss the predictions of SRD for electro-osmosis beyond the range of validity of the Helmholtz–Smoluchowski (or Poisson–Nernst–Planck) theory, in particular due to ion–ion correlations at the surface, to charge localisation on discrete sites at the solid surface and to surface charge heterogeneity, that all contribute to a reduction of the electro-osmotic flow. In order to disentangle these last two aspects, we also investigate at the mean-field level a simple system with alternate charged and neutral stripes, using lattice-Boltzmann electro-kinetics simulations. Overall, this work opens new perspectives for the use of SRD as a generic mesoscopic simulation method for soft matter problems, in particular under confinement, since in practice many interfaces between fluids and solids are charged.
Document type :
Journal articles
Complete list of metadatas

Cited literature [40 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-01212122
Contributor : Gestionnaire Hal-Upmc <>
Submitted on : Tuesday, October 6, 2015 - 10:47:20 AM
Last modification on : Wednesday, October 14, 2020 - 3:43:22 AM
Long-term archiving on: : Thursday, January 7, 2016 - 10:26:37 AM

File

Ceratti_2015_Stochastic_rotati...
Files produced by the author(s)

Identifiers

Citation

Davide R. Ceratti, Amaël Obliger, Marie Jardat, Benjamin Rotenberg, Vincent Dahirel. Stochastic Rotation Dynamics simulation of electro-osmosis. Molecular Physics, Taylor & Francis, 2015, pp.1-11. ⟨10.1080/00268976.2015.1037370⟩. ⟨hal-01212122⟩

Share

Metrics

Record views

700

Files downloads

327