Skip to Main content Skip to Navigation
Journal articles

Robust indoor localization and tracking using GSM fingerprints

Abstract : The article presents an easy to implement approach for indoor localization and navigation that combines Bayesian filtering with support vector machine classifiers to associate high-dimensionality cellular telephone network received signal strength fingerprints to distinct spatial regions. The technique employs a " space sampling " and a " time sampling " scheme in the training procedure, and the Bayesian filter allows introducing a priori information on room layout and target trajectories, resulting in robust room-level indoor localization.
Document type :
Journal articles
Complete list of metadatas

Cited literature [24 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-01215146
Contributor : Gestionnaire Hal-Upmc <>
Submitted on : Tuesday, October 13, 2015 - 3:48:14 PM
Last modification on : Saturday, September 26, 2020 - 11:44:10 PM
Long-term archiving on: : Thursday, April 27, 2017 - 12:12:17 AM

File

s13638-015-0401-7.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Ye Tian, Bruce Denby, Iness Ahriz, Pierre Roussel, Gérard Dreyfus. Robust indoor localization and tracking using GSM fingerprints. EURASIP Journal on Wireless Communications and Networking, SpringerOpen, 2015, pp.157. ⟨10.1186/s13638-015-0401-7⟩. ⟨hal-01215146⟩

Share

Metrics

Record views

440

Files downloads

461