Robust indoor localization and tracking using GSM fingerprints - Sorbonne Université Access content directly
Journal Articles EURASIP Journal on Wireless Communications and Networking Year : 2015

Robust indoor localization and tracking using GSM fingerprints

Abstract

The article presents an easy to implement approach for indoor localization and navigation that combines Bayesian filtering with support vector machine classifiers to associate high-dimensionality cellular telephone network received signal strength fingerprints to distinct spatial regions. The technique employs a " space sampling " and a " time sampling " scheme in the training procedure, and the Bayesian filter allows introducing a priori information on room layout and target trajectories, resulting in robust room-level indoor localization.
Fichier principal
Vignette du fichier
s13638-015-0401-7.pdf (2.2 Mo) Télécharger le fichier
Origin Publication funded by an institution
Loading...

Dates and versions

hal-01215146 , version 1 (13-10-2015)

Licence

Identifiers

Cite

Ye Tian, Bruce Denby, Iness Ahriz, Pierre Roussel, Gérard Dreyfus. Robust indoor localization and tracking using GSM fingerprints. EURASIP Journal on Wireless Communications and Networking, 2015, pp.157. ⟨10.1186/s13638-015-0401-7⟩. ⟨hal-01215146⟩
274 View
199 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More