A Hele-Shaw Problem for Tumor Growth - Sorbonne Université
Article Dans Une Revue Journal of Functional Analysis Année : 2017

A Hele-Shaw Problem for Tumor Growth

Résumé

We consider weak solutions to a problem modeling tumor growth. Under certain conditions on the initial data, solutions can be obtained by passing to the stiff (incompressible) limit in a porous medium type problem with a Lotka-Volterra source term describing the evolution of the number density of cancerous cells. We prove that such limit solutions solve a free boundary problem of Hele-Shaw type. We also obtain regularity properties, both for the solution and for its free boundary. The main new difficulty arises from the competition between the growth due to the source, which keeps the initial singularities, and the free boundary which invades the domain with a regularizing effect. New islands can be generated at singular times.
Fichier principal
Vignette du fichier
mpq-15-12-08.pdf (300.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01241309 , version 1 (10-12-2015)

Identifiants

Citer

Antoine Mellet, Benoît Perthame, Fernando Quirós. A Hele-Shaw Problem for Tumor Growth. Journal of Functional Analysis, 2017, 273, pp.3061-3093. ⟨hal-01241309⟩
638 Consultations
257 Téléchargements

Altmetric

Partager

More