Kinetic Brownian motion on Riemannian manifolds - Sorbonne Université
Article Dans Une Revue Electronic Journal of Probability Année : 2015

Kinetic Brownian motion on Riemannian manifolds

Résumé

We consider in this work a one parameter family of hypoelliptic diffusion processes on the unit tangent bundle T 1 M of a Riemannian manifold (M, g), collectively called kinetic Brownian motions, that are random perturbations of the geodesic flow, with a parameter σ quantifying the size of the noise. Projection on M of these processes provides random C 1 paths in M. We show, both qualitively and quantitatively, that the laws of these M-valued paths provide an interpolation between geodesic and Brownian motions. This qualitative description of kinetic Brownian motion as the parameter σ varies is complemented by a thourough study of its long time asymptotic behaviour on rotationally invariant manifolds, when σ is fixed, as we are able to give a complete description of its Poisson boundary in geometric terms.
Fichier principal
Vignette du fichier
4054-23306-2-PB.pdf (803.06 Ko) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01263340 , version 1 (27-01-2016)

Licence

Identifiants

Citer

Jürgen Angst, Ismaël Bailleul, Camille Tardif. Kinetic Brownian motion on Riemannian manifolds. Electronic Journal of Probability, 2015, 20 (none), pp.110. ⟨10.1214/EJP.v20-4054⟩. ⟨hal-01263340⟩
296 Consultations
257 Téléchargements

Altmetric

Partager

More