Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux - Sorbonne Université
Article Dans Une Revue Remote Sensing Année : 2015

Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux

Résumé

Surface reflectance has a central role in the analysis of land surface for a broad variety of Earth System studies. An accurate atmospheric correction, obtained by an appropriate selection of aerosol model, is the first requirement for reliable surface reflectance estimation. In the aerosol model, the type is defined by the physical and chemical properties, while the loading is usually described by the optical thickness at 550 nm. The aim of this work is to evaluate the radiative impact of the aerosol model on the surface reflectance obtained from Compact High Resolution Imaging Spectrometer (CHRIS) hyperspectral data over land by using the specifically developed algorithm CHRIS Atmospherically Corrected Reflectance Imagery (CHRIS@CRI) based on the 6SV radiative transfer model. We employed five different aerosol models: one provided by the AERONET inversion products (used as reference), three standard aerosol models in 6SV, and one obtained from the output of the GEOS-Chem global chemistry-transport model (CTM). The results obtained for the two case studies selected over Benelux show that in the absence of AERONET data on the scene, the best performing aerosol model is the one derived from CTM output.
Fichier principal
Vignette du fichier
remotesensing-07-08391.pdf (5.08 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01272251 , version 1 (10-02-2016)

Licence

Identifiants

Citer

Cecilia Tirelli, Gabriele Curci, Ciro Manzo, Paolo Tuccella, Cristiana Bassani. Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux. Remote Sensing, 2015, 7 (7), pp.8391-8415. ⟨10.3390/rs70708391⟩. ⟨hal-01272251⟩
618 Consultations
149 Téléchargements

Altmetric

Partager

More