In-lab X-ray fluorescence and diffraction techniques for pathological calcifications
Résumé
If imaging by physical methods is probably the best well-known link between physics and medicine, other ways such as X-ray fluorescence and diffraction techniques give significant information to clinicians. In this contribution, we would like to assess different results obtained through such techniques on three main problems in urology namely Randall's plaque, brushite kidney stones and phase conversion between weddellite and whewellite. Randall's plaque is a mineral deposit at the surface of the renal papilla which is responsible for the prevalence increase of kidney stones among young people. X-ray fluorescence suggests that an inflammation process is related to Randall's plaque. X-ray fluorescence shows that brushite stones, well known to be related to some pathologies or biochemical disorders, could also be related to unexpected conditions as suggested, for example, by the high content of Br found in several brushite stones. Such results deserve further investigations to explain the origin of that element in the stones. Regarding the phase conversion from weddellite to whewellite, X-ray fluorescence data suggest that trace elements initially present in the stone remain for the major part in situ during the conversion process, which may be clinically relevant to relate the crystalline phase and etiology. X-ray fluorescence and diffraction experiments can thus give significant clues to the clinicians. These examples as well as other investigations assessed in this contribution underline a typical scientific transfer between a physics laboratory and hospital.
Domaines
Physique [physics]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...