On the critical one component regularity for 3-D Navier-Stokes system - Sorbonne Université
Article Dans Une Revue Annales Scientifiques de l'École Normale Supérieure Année : 2016

On the critical one component regularity for 3-D Navier-Stokes system

Jean-Yves Chemin
  • Fonction : Auteur
  • PersonId : 830360
Ping Zhang
  • Fonction : Auteur
  • PersonId : 847374

Résumé

Given an initial data $v_0$ with vorticity $\Om_0=\na\times v_0$ in $L^{\frac 3 2},$ (which implies that $v_0$ belongs to the Sobolev space $H^{\frac12}$), we prove that the solution $v$ given by the classical Fujita-Kato theorem blows up in a finite time $T^\star$ only if, for any $p$ in $ ]4,6[$ and any unit vector $e$ in $\R^3,$ there holds $ \int_0^{T^\star}\|v(t)\cdot e\|_{\dH^{\f12+\f2p}}^p\,dt=\infty.$ We remark that all these quantities are scaling invariant under the scaling transformation of Navier-Stokes system.

Dates et versions

hal-01311394 , version 1 (04-05-2016)

Identifiants

Citer

Jean-Yves Chemin, Ping Zhang. On the critical one component regularity for 3-D Navier-Stokes system. Annales Scientifiques de l'École Normale Supérieure, 2016, 49 (1), pp.131-167. ⟨hal-01311394⟩
337 Consultations
0 Téléchargements

Altmetric

Partager

More