Patterns of deformations of Peregrine breather of order 3 and 4 solutions to the NLS equation with multi parameters - Sorbonne Université
Article Dans Une Revue Journal of Theoretical and Applied Physics Année : 2016

Patterns of deformations of Peregrine breather of order 3 and 4 solutions to the NLS equation with multi parameters

Résumé

In this article, one gives a classification of the solutions to the one dimensional nonlinear focusing Schrödinger equation (NLS) by considering the modulus of the solutions in the $(x, t)$ plan in the cases of orders 3 and 4. For this, we use a representation of solutions to NLS equation as a quotient of two determinants by an exponential depending on $t$. This formulation gives in the case of the order 3 and 4, solutions with, respectively 4 and 6 parameters. With this method, beside Peregrine breathers, we construct all characteristic patterns for the modulus of solutions, like triangular configurations, ring and others.
Fichier principal
Vignette du fichier
patterns8def.pdf (2.66 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01321436 , version 1 (25-05-2016)

Licence

Identifiants

Citer

Pierre Gaillard, Mickaël Gastineau. Patterns of deformations of Peregrine breather of order 3 and 4 solutions to the NLS equation with multi parameters. Journal of Theoretical and Applied Physics, 2016, 10 (2), pp.83-89. ⟨10.1007/s40094-015-0204-6⟩. ⟨hal-01321436⟩
325 Consultations
143 Téléchargements

Altmetric

Partager

More