Learning a Distance Metric from Relative Comparisons between Quadruplets of Images - Sorbonne Université
Article Dans Une Revue International Journal of Computer Vision Année : 2016

Learning a Distance Metric from Relative Comparisons between Quadruplets of Images

Marc T. Law
  • Fonction : Auteur correspondant
Nicolas Thome
Matthieu Cord

Résumé

This paper is concerned with the problem of learning a distance metric by considering meaningful and dis-criminative distance constraints in some contexts where rich information between data is provided. Classic metric learning approaches focus on constraints that involve pairs or triplets of images. We propose a general Mahalanobis-like distance metric learning framework that exploits distance constraints over up to four different images. We show how the integration of such constraints can lead to unsupervised or semi-supervised learning tasks in some applications. We also show the benefit on recognition performance of this type of constraints, in rich contexts such as relative attributes, class taxonomies and temporal webpage analysis.
Fichier principal
Vignette du fichier
Law_2016_Learning_a_Distance.pdf (9.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01346190 , version 1 (18-07-2016)

Identifiants

Citer

Marc T. Law, Nicolas Thome, Matthieu Cord. Learning a Distance Metric from Relative Comparisons between Quadruplets of Images. International Journal of Computer Vision, 2016, pp.1-30. ⟨10.1007/s11263-016-0923-4⟩. ⟨hal-01346190⟩
280 Consultations
365 Téléchargements

Altmetric

Partager

More