MineRank: Leveraging users’ latent roles for unsupervised collaborative information retrieval

Abstract : Research on collaborative information retrieval (CIR) has shown positive impacts of collaboration on retrieval effectiveness in the case of complex and/or exploratory tasks. The synergic effect of accomplishing something greater than the sum of its individual components is reached through the gathering of collaborators' complementary skills. However, these approaches often lack the consideration that collaborators might refine their skills and actions throughout the search session, and that a flexible system mediation guided by collaborators' behaviors should dynamically adapt to this situation in order to optimize search effectiveness. In this article, we propose a new unsupervised collaborative ranking algorithm which leverages collaborators' actions for (1) mining their latent roles in order to extract their complementary search behaviors; and (2) ranking documents with respect to the latent role of collaborators. Experiments using two user studies with respectively 25 and 10 pairs of collaborators demonstrate the benefit of such an unsupervised method driven by collaborators' behaviors throughout the search session. Also, a qualitative analysis of the identified latent role is proposed to explain an over-learning noticed in one of the datasets.
Type de document :
Article dans une revue
Information Processing and Management, Elsevier, 2016, 52 (6), pp.1122-1141. 〈10.1016/j.ipm.2016.05.002〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01353589
Contributeur : Laure Soulier <>
Soumis le : vendredi 12 août 2016 - 12:12:05
Dernière modification le : samedi 8 décembre 2018 - 01:27:14
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 11:27:32

Fichier

VFinal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Laure Soulier, Lynda Tamine, Chirag Shah. MineRank: Leveraging users’ latent roles for unsupervised collaborative information retrieval. Information Processing and Management, Elsevier, 2016, 52 (6), pp.1122-1141. 〈10.1016/j.ipm.2016.05.002〉. 〈hal-01353589〉

Partager

Métriques

Consultations de la notice

310

Téléchargements de fichiers

251