Learning Information Spread in Content Networks - Sorbonne Université
Poster De Conférence Année : 2014

Learning Information Spread in Content Networks

Résumé

We introduce a model for predicting the diffusion of content information on social media. When propagation is usually modeled on discrete graph structures, we introduce here a continuous diffusion model, where nodes in a diffusion cascade are projected onto a latent space with the property that their proximity in this space reflects the temporal diffusion process. We focus on the task of predicting contaminated users for an initial initial information source and provide preliminary results on differents datasets.
Fichier non déposé

Dates et versions

hal-01357961 , version 1 (30-08-2016)

Identifiants

  • HAL Id : hal-01357961 , version 1

Citer

Cédric Lagnier, Simon Bourigault, Sylvain Lamprier, Ludovic Denoyer, Patrick Gallinari. Learning Information Spread in Content Networks. ICLR 2014 - International Conference on Learning Representations, Apr 2014, Banff, Canada. pp.abs/1312.6169, 2014, CoRR. ⟨hal-01357961⟩
247 Consultations
0 Téléchargements

Partager

More