ON A PHASE FIELD APPROXIMATION OF THE PLANAR STEINER PROBLEM: EXISTENCE, REGULARITY, AND ASYMPTOTIC OF MINIMIZERS - Sorbonne Université
Article Dans Une Revue Interfaces and Free Boundaries : Mathematical Analysis, Computation and Applications Année : 2018

ON A PHASE FIELD APPROXIMATION OF THE PLANAR STEINER PROBLEM: EXISTENCE, REGULARITY, AND ASYMPTOTIC OF MINIMIZERS

Matthieu Bonnivard
  • Fonction : Auteur
  • PersonId : 888941
Antoine Lemenant
Vincent Millot

Résumé

In this article, we consider and analyse a small variant of a functional originally introduced in [9, 22] to approximate the (geometric) planar Steiner problem. This functional depends on a small parameter ε > 0 and resembles the (scalar) Ginzburg-Landau functional from phase transitions. In a first part, we prove existence and regularity of minimizers for this functional. Then we provide a detailed analysis of their behavior as ε → 0, showing in particular that sublevel sets Hausdorff converge to optimal Steiner sets. Applications to the average distance problem and optimal compliance are also discussed.
Fichier principal
Vignette du fichier
BLM-submit.pdf (474.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01401822 , version 1 (23-11-2016)

Identifiants

  • HAL Id : hal-01401822 , version 1

Citer

Matthieu Bonnivard, Antoine Lemenant, Vincent Millot. ON A PHASE FIELD APPROXIMATION OF THE PLANAR STEINER PROBLEM: EXISTENCE, REGULARITY, AND ASYMPTOTIC OF MINIMIZERS. Interfaces and Free Boundaries : Mathematical Analysis, Computation and Applications, 2018, 20. ⟨hal-01401822⟩
138 Consultations
168 Téléchargements

Partager

More