Discretization error cancellation in electronic structure calculation: toward a quantitative study

Abstract : It is often claimed that error cancellation plays an essential role in quantum chemistry and first-principle simulation for condensed matter physics and materials science. Indeed, while the energy of a large, or even medium-size, molecular system cannot be estimated numerically within chemical accuracy (typically 1 kcal/mol or 1 mHa), it is considered that the energy difference between two configurations of the same system can be computed in practice within the desired accuracy. The purpose of this paper is to provide a quantitative study of discretization error cancellation. The latter is the error component due to the fact that the model used in the calculation (e.g. Kohn-Sham LDA) must be discretized in a finite basis set to be solved by a computer. We first report comprehensive numerical simulations performed with Abinit [1,2] on two simple chemical systems, the hydrogen molecule on the one hand, and a system consisting of two oxygen atoms and four hydrogen atoms on the other hand. We observe that errors on energy differences are indeed significantly smaller than errors on energies, but that these two quantities asymptotically converge at the same rate when the energy cutoff goes to infinity. We then analyze a simple one-dimensional periodic Schrödinger equation with Dirac potentials, for which analytic solutions are available. This allows us to explain the discretization error cancellation phenomenon on this test case with quantitative mathematical arguments.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (5), pp. 1617 - 1636. 〈10.1051/m2an/2017035〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01435054
Contributeur : Geneviève Dusson <>
Soumis le : lundi 20 novembre 2017 - 15:35:31
Dernière modification le : vendredi 16 novembre 2018 - 01:56:27
Document(s) archivé(s) le : mercredi 21 février 2018 - 16:12:51

Fichier

article_hal_version.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Eric Cancès, Geneviève Dusson. Discretization error cancellation in electronic structure calculation: toward a quantitative study. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (5), pp. 1617 - 1636. 〈10.1051/m2an/2017035〉. 〈hal-01435054v2〉

Partager

Métriques

Consultations de la notice

224

Téléchargements de fichiers

91