A sufficient condition for slow decay of a solution to a semilinear parabolic equation - Sorbonne Université Access content directly
Journal Articles Analysis and Applications Year : 2012

A sufficient condition for slow decay of a solution to a semilinear parabolic equation

Imen Ben Arbi
  • Function : Author
  • PersonId : 879156
Alain Haraux
  • Function : Author
  • PersonId : 836471

Abstract

We consider the equation psi t - Delta psi + c vertical bar psi vertical bar (p-1)psi = 0 with Neumann boundary conditions in a bounded smooth open connected domain of R-n with p > 1, c > 0. We show that if the initial condition is small enough and if the absolute value of its average overpasses a certain multiple of the pth power of its L-infinity norm, then psi(t, .) decreases like t(-1/(p-1)).

Dates and versions

hal-01448170 , version 1 (27-01-2017)

Identifiers

Cite

Imen Ben Arbi, Alain Haraux. A sufficient condition for slow decay of a solution to a semilinear parabolic equation. Analysis and Applications, 2012, 10 (4), pp.363-371. ⟨10.1142/S0219530512500170⟩. ⟨hal-01448170⟩
110 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More