Subdifferentiation of integral functionals - Sorbonne Université
Pré-Publication, Document De Travail Année : 2017

Subdifferentiation of integral functionals

Emmanuel Giner
  • Fonction : Auteur
  • PersonId : 999825
Jean-Paul Penot
  • Fonction : Auteur
  • PersonId : 933439

Résumé

We examine how the subdi¤erentials of nonconvex integral functionals can be deduced from the subdi¤erentials of the corresponding integrand or at least be estimated with the help of them. In fact, assuming some regularity properties of the integrands, we obtain exact expressions for the subdi¤erentials of the integral functionals. We draw some consequences in terms of duality for such integral functionals, extending in this way the early work of R.T. Rockafellar to the nonconvex case.
Fichier principal
Vignette du fichier
Limoges Giner-Penot.pdf (230.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01450022 , version 1 (30-01-2017)

Identifiants

  • HAL Id : hal-01450022 , version 1

Citer

Emmanuel Giner, Jean-Paul Penot. Subdifferentiation of integral functionals. 2017. ⟨hal-01450022⟩
196 Consultations
710 Téléchargements

Partager

More