Two-sided space-time $L^1$ approximation and optimal control of polynomial systems - Sorbonne Université
Article Dans Une Revue Applied Mathematics and Optimization Année : 2020

Two-sided space-time $L^1$ approximation and optimal control of polynomial systems

Résumé

We study a two-sided space-time $L^1$ optimization problem and show how to reformulate the problem within the framework of optimal control theory for polynomial systems. This yields insight on the structure of the optimal solution. We prove existence and uniqueness of the optimal solution, and we characterize it by means of the Pontryagin maximum principle. The cost function and the control converge when the polynomial degree tends to $+∞$. We illustrate the theory with numerical simulations, which show that our optimal control interpretation leads to efficient algorithms.
Fichier principal
Vignette du fichier
envoie-1.pdf (835.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01487186 , version 1 (11-03-2017)

Identifiants

Citer

Bruno Després, Emmanuel Trélat. Two-sided space-time $L^1$ approximation and optimal control of polynomial systems. Applied Mathematics and Optimization, 2020, 82 (1), pp.307--352. ⟨10.1007/s00245-018-9501-1⟩. ⟨hal-01487186⟩
204 Consultations
148 Téléchargements

Altmetric

Partager

More