Buckling of an elastic ridge: competition between wrinkles and creases - Sorbonne Université
Article Dans Une Revue Physical Review Letters Année : 2017

Buckling of an elastic ridge: competition between wrinkles and creases

Résumé

We investigate the elastic buckling of a triangular prism made of a soft elastomer. A face of the prism is bonded to a stiff slab that imposes an average axial compression. We observe two possible buckling modes which are localized along the free ridge. For ridge angles $\phi$ below a critical value $\phi^\star\approx 90^\circ$ experiments reveal an extended sinusoidal mode, while for $\phi$ above $\phi^\star$ we observe a series of creases progressively invading the lateral faces starting from the ridge. A numerical linear stability analysis is set up using the finite-element method and correctly predicts the sinusoidal mode for $\phi \leq \phi^\star$, as well as the associated critical strain $\epsilon_{\mathrm{c}}(\phi)$. The experimental transition at $\phi^\star$ is found to occur when this critical strain $\epsilon_{\mathrm{c}}(\phi)$ attains the value $\epsilon_{\mathrm{c}}(\phi^\star) = 0.44$ corresponding to the threshold of the sub-critical surface creasing instability. Previous analyses have focused on elastic crease patterns appearing on planar surfaces, where the role of scale-invariance has been emphasized; our analysis of the elastic ridge provides a different perspective, and reveals that scale-invariance is not a sufficient condition for localization.
Fichier principal
Vignette du fichier
16-prl-ridge (1).pdf (1.23 Mo) Télécharger le fichier
SuppMat (1).pdf (2.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01502711 , version 1 (06-04-2017)

Identifiants

Citer

Claire Lestringant, Corrado Maurini, Arnaud Lazarus, Basile Audoly. Buckling of an elastic ridge: competition between wrinkles and creases. Physical Review Letters, 2017, 118, pp.165501 ⟨10.1103/PhysRevLett.118.165501⟩. ⟨hal-01502711⟩
537 Consultations
236 Téléchargements

Altmetric

Partager

More