Tuning Adhesion at Metal/Oxide Interfaces by Surface Hydroxylation - Sorbonne Université
Article Dans Une Revue Journal of Physical Chemistry C Année : 2017

Tuning Adhesion at Metal/Oxide Interfaces by Surface Hydroxylation

Résumé

The control of adhesion at metal/oxide interfaces is of key importance in modern applications, whenever three-dimensional metal clusters or two-dimensional metal overlayers are to be synthesized on an oxide support. By focusing on the zinc/alumina system, we address here one of the long-standing issues in this context, which is the poor wetting of wide band-gap oxides by noble and post-transition metals. It has recently been recognized to have detrimental industrial consequences for the adhesion of anti-corrosive zinc coatings to new high strength steels grades. We have combined photoemission, thermal desorption and plasmonics with atomistic simulation to describe the energetics of zinc deposits on dry and hydroxylated α-Al2O3(0001) surfaces. Both experimental and computational results show that an activated reaction of the metal with the OH-covered surface, followed by hydrogen desorption, produces dispersed interfacial moieties involving both oxidized Zn species and under-coordinated oxygen ions, that lead to a significant improvement of adsorption/adhesion characteristics on the hydroxylated surface. In particular, the key role of interfacial under-coordinated anions, remnants of the hydroxylation layer, is highlighted for the first time, pointing to a general mechanism by which surface hydroxylation appears as a promising route towards a systematic improvement of wide band gap oxide wetting by metals.
Fichier principal
Vignette du fichier
Le_2017_Tuning_Adhesion_at.pdf (968.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01520408 , version 1 (10-05-2017)

Identifiants

Citer

Ha-Linh Thi Le, Remi Lazzari, Jacek Goniakowski, Remi Cavallotti, Stephane Chenot, et al.. Tuning Adhesion at Metal/Oxide Interfaces by Surface Hydroxylation. Journal of Physical Chemistry C, 2017, 121 (21), pp.11464-11471. ⟨10.1021/acs.jpcc.7b02456⟩. ⟨hal-01520408⟩
300 Consultations
362 Téléchargements

Altmetric

Partager

More