Beyond the frontiers of neuronal types

Abstract : Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes.
Type de document :
Article dans une revue
Frontiers in Neural Circuits, Frontiers, 2013, 7, pp.13. 〈10.3389/fncir.2013.00013〉
Liste complète des métadonnées

Littérature citée [86 références]  Voir  Masquer  Télécharger
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : lundi 12 juin 2017 - 14:57:38
Dernière modification le : mercredi 21 mars 2018 - 18:57:07
Document(s) archivé(s) le : jeudi 14 septembre 2017 - 12:30:20


Publication financée par une institution


Distributed under a Creative Commons Paternité 4.0 International License




Demian Battaglia, Anastassios Karagiannis, Thierry Gallopin, Harold W. Gutch, Bruno Cauli. Beyond the frontiers of neuronal types. Frontiers in Neural Circuits, Frontiers, 2013, 7, pp.13. 〈10.3389/fncir.2013.00013〉. 〈hal-01537215〉



Consultations de la notice


Téléchargements de fichiers