Magnetotactic Coccus Strain SHHC-1 Affiliated to Alphaproteobacteria Forms Octahedral Magnetite Magnetosomes

Abstract : Magnetotactic bacteria (MTB) are morphologically and phylogenetically diverse prokaryotes. They can form intracellular chain-assembled magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals each enveloped by a lipid bilayer membrane called a magnetosome. Magnetotactic cocci have been found to be the most abundant morphotypes of MTB in various aquatic environments. However, knowledge on magnetosome biomineralization within magnetotactic cocci remains elusive due to small number of strains that have been cultured. By using a coordinated fluorescence and scanning electron microscopy method, we discovered a unique magnetotactic coccus strain (tentatively named SHHC-1) in brackish sediments collected from the estuary of Shihe River in Qinhuangdao city, eastern China. It phylogenetically belongs to the Alphaproteobacteria class. Transmission electron microscopy analyses reveal that SHHC-1 cells formed many magnetite-type magnetosomes organized as two bundles in each cell. Each bundle contains two parallel chains with smaller magnetosomes generally located at the ends of each chain. Unlike most magnetotactic alphaproteobacteria that generally form magnetosomes with uniform crystal morphologies, SHHC-1 magnetosomes display a more diverse variety of crystal morphology even within a single cell. Most particles have rectangular and rhomboidal projections, whilst others are triangular, or irregular. High resolution transmission electron microscopy observations coupled with morphological modeling indicate an idealized model—elongated octahedral crystals, a form composed of eight {111} faces. Furthermore, twins, multiple twins and stack dislocations are frequently observed in the SHHC-1 magnetosomes. This suggests that biomineralization of strain SHHC-1 magnetosome might be less biologically controlled than other magnetotactic alphaproteobacteria. Alternatively, SHHC-1 is more sensitive to the unfavorable environments under which it lives, or a combination of both factors may have controlled the magnetosome biomineralization process within this unique MTB.
Type de document :
Article dans une revue
Frontiers in Microbiology, Frontiers Media, 2017, 8, pp.969. 〈10.3389/fmicb.2017.00969〉
Liste complète des métadonnées

Littérature citée [71 références]  Voir  Masquer  Télécharger
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : lundi 19 juin 2017 - 13:43:53
Dernière modification le : jeudi 24 mai 2018 - 16:44:03
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 16:41:27


Publication financée par une institution


Distributed under a Creative Commons Paternité 4.0 International License




Heng Zhang, Nicolas Menguy, Fuxian Wang, Karim Benzerara, Éric Leroy, et al.. Magnetotactic Coccus Strain SHHC-1 Affiliated to Alphaproteobacteria Forms Octahedral Magnetite Magnetosomes. Frontiers in Microbiology, Frontiers Media, 2017, 8, pp.969. 〈10.3389/fmicb.2017.00969〉. 〈hal-01541659〉



Consultations de la notice


Téléchargements de fichiers