Providing a non-deterministic representation of spatial variability of precipitation in the Everest region

Abstract : This paper provides a new representation of the effect of altitude on precipitation that represents spatial and temporal variability in precipitation in the Ever-est region. Exclusive observation data are used to infer a piecewise linear function for the relation between altitude and precipitation and significant seasonal variations are highlighted. An original ensemble approach is applied to provide non-deterministic water budgets for middle and high-mountain catchments. Physical processes at the soil– atmosphere interface are represented through the Interactions Soil–Biosphere–Atmosphere (ISBA) surface scheme. Uncertainties associated with the model parametrization are limited by the integration of in situ measurements of soils and vegetation properties. Uncertainties associated with the representation of the orographic effect are shown to account for up to 16 % of annual total precipitation. Annual evapotranspi-ration is shown to represent 26 % ± 1 % of annual total precipitation for the mid-altitude catchment and 34% ± 3 % for the high-altitude catchment. Snowfall contribution is shown to be neglectable for the mid-altitude catchment, and it represents up to 44 % ± 8 % of total precipitation for the high-altitude catchment. These simulations on the local scale enhance current knowledge of the spatial variability in hydro-climatic processes in high-and mid-altitude mountain environments .
Document type :
Journal articles
Complete list of metadatas

Cited literature [65 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-01617971
Contributor : Gestionnaire Hal-Upmc <>
Submitted on : Tuesday, October 17, 2017 - 11:59:35 AM
Last modification on : Tuesday, October 8, 2019 - 12:01:57 PM
Long-term archiving on: Thursday, January 18, 2018 - 2:07:38 PM

File

hess-21-4879-2017.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Judith Eeckman, Pierre Chevallier, Aaron Boone, Luc Neppel, Anneke de Rouw, et al.. Providing a non-deterministic representation of spatial variability of precipitation in the Everest region. Hydrology and Earth System Sciences, European Geosciences Union, 2017, 21 (9), pp.4879-4893. ⟨10.5194/hess-21-4879-2017⟩. ⟨hal-01617971⟩

Share

Metrics

Record views

311

Files downloads

351