Full counting statistics approach to the quantum non-equilibrium Landauer bound
Abstract
We develop the full counting statistics of dissipated heat to explore the relation with Landauer's principle. Combining the two-time measurement protocol for the reconstruction of the statistics of heat with the minimal set of assumptions for Landauer's principle to hold, we derive a general one-parameter family of upper and lower bounds on the mean dissipated heat from a system to its environment. Furthermore, we establish a connection with the degree of non-unitality of the system's dynamics and show that, if a large deviation function exists as stationary limit of the above cumulant generating function, then our family of lower and upper bounds can be used to witness and understand first-order dynamical phase transitions. For the purpose of demonstration, we apply these bounds to an externally pumped three level system coupled to a finite sized thermal environment.
Origin | Publication funded by an institution |
---|
Loading...