Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble - Sorbonne Université
Article Dans Une Revue Nature Communications Année : 2018

Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble

Résumé

Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.
Fichier principal
Vignette du fichier
s41467-017-02775-8.pdf (784.29 Ko) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01708499 , version 1 (13-02-2018)

Licence

Identifiants

Citer

Pierre Vernaz-Gris, Kun Huang, Mingtao Cao, Alexandra S Sheremet, Julien Laurat. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nature Communications, 2018, 9, pp.363. ⟨10.1038/s41467-017-02775-8⟩. ⟨hal-01708499⟩
306 Consultations
102 Téléchargements

Altmetric

Partager

More