Effective Coefficients and Local Fields of Periodic Fibrous Piezocomposites with 622 Hexagonal Constituents - Sorbonne Université Access content directly
Book Sections Year : 2018

Effective Coefficients and Local Fields of Periodic Fibrous Piezocomposites with 622 Hexagonal Constituents

Abstract

The asymptotic homogenization method is applied to a family of boundary value problems for linear piezoelectric heterogeneous media with periodic and rapidly oscillating coefficients. We consider a two-phase fibrous composite consisting of identical circular cylinders perfectly bonded in a matrix. Both constituents are piezoelectric 622 hexagonal crystal and the periodic distribution of the fibers follows a
Fichier principal
Vignette du fichier
alfonso-rodriguez-et-al-2018.pdf (4.44 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01727347 , version 1 (09-03-2018)

Identifiers

  • HAL Id : hal-01727347 , version 1

Cite

Ransés Alfonso-Rodríguez, Julian Bravo-Castillero, Renald Brenner, Raúl Guinovart-Díaz, Leslie D Pérez-Fernández, et al.. Effective Coefficients and Local Fields of Periodic Fibrous Piezocomposites with 622 Hexagonal Constituents. Generalized Models and Non-Classical Approaches in Complex Materials, In press. ⟨hal-01727347⟩
68 View
129 Download

Share

Gmail Facebook Twitter LinkedIn More