Modulo $p$ representations of reductive $p$-adic groups: functorial properties - Sorbonne Université
Pré-Publication, Document De Travail Année : 2018

Modulo $p$ representations of reductive $p$-adic groups: functorial properties

Résumé

Let $F$ be a local field with residue characteristic $p$, let $C$ be an algebraically closed field of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. In a previous paper, Florian Herzig and the authors classified irreducible admissible $C$-representations of $G=\mathbf{G}(F)$ in terms of supercuspidal representations of Levi subgroups of $G$. Here, for a parabolic subgroup $P$ of $G$ with Levi subgroup $M$ and an irreducible admissible $C$-representation $\tau$ of $M$, we determine the lattice of subrepresentations of $\mathrm{Ind}_P^G \tau$ and we show that $\mathrm{Ind}_P^G \chi \tau$ is irreducible for a general unramified character $\chi$ of $M$. In the reverse direction, we compute the image by the two adjoints of $\mathrm{Ind}_P^G$ of an irreducible admissible representation $\pi$ of $G$. On the way, we prove that the right adjoint of $\mathrm{Ind}_P^G $ respects admissibility, hence coincides with Emerton's ordinary part functor $\mathrm{Ord}_{\overline{P}}^G$ on admissible representations.
Fichier principal
Vignette du fichier
Abe et al. - 2017 - Modulo $p$ representations of reductive $p$-adic g.pdf (597.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01919518 , version 1 (12-11-2018)

Identifiants

Citer

Noriyuki Abe, Guy Henniart, Marie-France Vignéras. Modulo $p$ representations of reductive $p$-adic groups: functorial properties. 2018. ⟨hal-01919518⟩
56 Consultations
140 Téléchargements

Altmetric

Partager

More