Discrete dynamical stabilization of a naturally diverging mass in a harmonically time-varying potential - Sorbonne Université Access content directly
Journal Articles Physica D: Nonlinear Phenomena Year : 2019

Discrete dynamical stabilization of a naturally diverging mass in a harmonically time-varying potential

Arnaud Lazarus

Abstract

We numerically investigate the stability and linear oscillatory behavior of a naturally diverging mass whose potential energy is harmonically modulated. It is known that in the Kapitza limit, i.e. when the period of modulation is much smaller than the diverging time, the collapsing mass can be dynamically stabilized and behave like an effective classic harmonic oscillator. We find that in the regime where the period of modulation is larger than the collapsing time of the mass, dynamical stabilization is still possible but in a discrete fashion. Only almost-periodic vibrational modes, or Floquet forms (FFs), are allowed that are located in independent stability stripes in the modulation parameter space. Reducing the FFs to their periodic eigenfunctions, one can transform the original equation of motion to a dimensionless Schrödinger stationary wave equation with a harmonic potential. This transformation allows for an analytical prediction of the stability stripes and the modal shapes of the vibrating mass. These results shed new light on the stability of linear dynamical systems, analytical solutions of Mathieu equations and on the relations between Initial and Boundary Value Problems.
Fichier principal
Vignette du fichier
Manuscript_Lazarus_PhysicaD_revised.pdf (1.9 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01937296 , version 1 (11-06-2020)

Identifiers

Cite

Arnaud Lazarus. Discrete dynamical stabilization of a naturally diverging mass in a harmonically time-varying potential. Physica D: Nonlinear Phenomena, 2019, 386-387, pp.1-7. ⟨10.1016/j.physd.2018.08.001⟩. ⟨hal-01937296⟩
24 View
113 Download

Altmetric

Share

Gmail Facebook X LinkedIn More