Energetic Wave Equation for Diffuse Sound Fields - Sorbonne Université
Communication Dans Un Congrès Année : 2018

Energetic Wave Equation for Diffuse Sound Fields

Jean-Dominique Polack
Thomas Toulemonde
  • Fonction : Auteur

Résumé

The diffusion equation for modelling diffuse sound fields was proposed some fifty years ago on heuristic principles as an extension to Sabine's diffuse field model, and still receives much attention. Recently, the authors developed the model one step further to provide the missing relations between sound intensity and sound energy. This introduces some extra terms that, in case of non-Sabine spaces (narrow or flat rooms), can be defined with the help of the boundary conditions in terms of absorption and scattering coefficients on the walls. Integrating the divergence of the stress-energy tensor across the shortest dimensions of the space leads to a propagation equation of the Telegraph type, which can be solved using finite difference time domain simulation. For the two-dimensional case (open-space), numerical results are compared to measurements in real spaces. The comparison makes it possible to evaluate the absorption and scattering coefficients by an adjustment procedure.
Fichier principal
Vignette du fichier
polack_2018_euronoise1.pdf (575.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01949928 , version 1 (19-12-2018)

Identifiants

  • HAL Id : hal-01949928 , version 1

Citer

Jean-Dominique Polack, Hugo Dujourdy, Baptiste Pialot, Thomas Toulemonde. Energetic Wave Equation for Diffuse Sound Fields. Euronoise, May 2018, Heraklion, Greece. ⟨hal-01949928⟩
55 Consultations
140 Téléchargements

Partager

More