SyMIL: MinMax Latent SVM for Weakly Labeled Data
Abstract
Designing powerful models able to handle weakly labeled data is a crucial problem in machine learning. In this paper, we propose a new Multiple Instance Learning (MIL) framework. Examples are represented as bags of instances, but we depart from standard MIL assumptions by introducing a symmetric strategy (SyMIL) that seeks discriminative instances in positive and negative bags. The idea is to use the instance the most distant from the hyper-plan to classify the bag. We provide a theoretical analysis featuring the generalization properties of our model. We derive a large margin formulation of our problem, which is cast as a difference of convex functions, and optimized using CCCP. We provide a primal version optimizing with stochastic sub-gradient descent and a dual version optimizing with one-slack cutting-plane. Successful experimental results are reported on standard MIL and weakly-supervised object detection datasets: SyMIL significantly outperforms competitive methods (mi/MI/Latent-SVM), and gives very competitive performance compared to state-of-the-art works. We also analyze the selected instances of symmetric and asymmetric approaches on weakly-supervised object detection and text classification tasks. Finally we show complementarity of SyMIL with recent works on learning with label proportions on standard MIL datasets.
Origin | Files produced by the author(s) |
---|
Loading...