Reinforcement Learning for Bio-Inspired Target Seeking - Sorbonne Université
Communication Dans Un Congrès Année : 2017

Reinforcement Learning for Bio-Inspired Target Seeking

Résumé

Because animals are extremely effective at moving in their natural environments they represent an excellent model to implement robust robotic movement and navigation. Braitenberg vehicles are bio-inspired models of animal navigation widely used in robotics. Tuning the parameters of these vehicles to generate appropriate behaviour can be challenging and time consuming. In this paper we present a Reinforcement Learning methodology to learn the sensori-motor connection of Braitenberg vehicle 3a, a biological model of source seeking. We present simulations of different stimuli and reward functions to illustrate the feasibility of this approach.
Fichier principal
Vignette du fichier
2017ACTI3997.pdf (501.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01980224 , version 1 (14-01-2019)

Identifiants

Citer

James Gillespie, Iñaki Rañó, Nazmul Siddique, Jose Luis Santos, Mehdi Khamassi. Reinforcement Learning for Bio-Inspired Target Seeking. Annual Conference Towards Autonomous Robotic Systems, Jul 2017, Guildford, United Kingdom. pp.637-650, ⟨10.1007/978-3-319-64107-2_52⟩. ⟨hal-01980224⟩
34 Consultations
159 Téléchargements

Altmetric

Partager

More