Improvements in Forecasting Intense Rainfall: Results from the FRANC (Forecasting Rainfall Exploiting New Data Assimilation Techniques and Novel Observations of Convection) Project - Sorbonne Université
Article Dans Une Revue Atmosphere Année : 2019

Improvements in Forecasting Intense Rainfall: Results from the FRANC (Forecasting Rainfall Exploiting New Data Assimilation Techniques and Novel Observations of Convection) Project

Ross N Bannister
  • Fonction : Auteur
  • PersonId : 1047132
Peter Clark
  • Fonction : Auteur
  • PersonId : 1047133
Hannah L Cloke
  • Fonction : Auteur
  • PersonId : 1047134
Suzanne L Gray
  • Fonction : Auteur
  • PersonId : 1047136
Anthony J Illingworth
  • Fonction : Auteur
  • PersonId : 1047137
Dingmin Li
  • Fonction : Auteur
Nancy K Nichols
  • Fonction : Auteur
  • PersonId : 1047138
John C Nicol
  • Fonction : Auteur
  • PersonId : 1047139
Andrew Oxley
  • Fonction : Auteur
  • PersonId : 1047140
Robert S Plant
  • Fonction : Auteur
  • PersonId : 1047141
Ian Roulstone
  • Fonction : Auteur
  • PersonId : 1047142
Robert J Thompson
  • Fonction : Auteur
  • PersonId : 1047143
Joanne A Waller
  • Fonction : Auteur
  • PersonId : 1047144

Résumé

The FRANC project (Forecasting Rainfall exploiting new data Assimilation techniques and Novel observations of Convection) has researched improvements in numerical weather prediction of convective rainfall via the reduction of initial condition uncertainty. This article provides an overview of the project's achievements. We highlight new radar techniques: correcting for attenuation of the radar return; correction for beams that are over 90% blocked by trees or towers close to the radar; and direct assimilation of radar reflectivity and refractivity. We discuss the treatment of uncertainty in data assimilation: new methods for estimation of observation uncertainties with novel applications to Doppler radar winds, Atmospheric Motion Vectors, and satellite radiances; a new algorithm for implementation of spatially-correlated observation error statistics in operational data assimilation; and innovative treatment of moist processes in the background error covariance model. We present results indicating a link between the spatial predictability of convection and convective regimes, with potential to allow improved forecast interpretation. The research was carried out as a partnership between University researchers and the Met Office (UK). We discuss the benefits of this approach and the impact of our research, which has helped to improve operational forecasts for convective rainfall events.
Fichier principal
Vignette du fichier
atmosphere-10-00125.pdf (5.34 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02125487 , version 1 (10-05-2019)

Identifiants

Citer

Sarah L Dance, Susan P Ballard, Ross N Bannister, Peter Clark, Hannah L Cloke, et al.. Improvements in Forecasting Intense Rainfall: Results from the FRANC (Forecasting Rainfall Exploiting New Data Assimilation Techniques and Novel Observations of Convection) Project. Atmosphere, 2019, 10 (3), pp.125. ⟨10.3390/atmos10030125⟩. ⟨hal-02125487⟩
108 Consultations
57 Téléchargements

Altmetric

Partager

More