Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells

Abstract : Caveolin-3 is the major structural protein of caveolae in muscle. Mutations in the CAV3 gene cause different types of myopathies with altered membrane integrity and repair, expression of muscle proteins, and regulation of signaling pathways. We show here that myotubes from patients bearing the CAV3 P28L and R26Q mutations present a dramatic decrease of caveolae at the plasma membrane, resulting in abnormal response to mechanical stress. Mutant myotubes are unable to buffer the increase in membrane tension induced by mechanical stress. This results in impaired regulation of the IL6/STAT3 signaling pathway leading to its constitutive hyperactivation and increased expression of muscle genes. These defects are fully reversed by reassembling functional caveolae through expression of caveolin-3. Our study reveals that under mechanical stress the regulation of mechan-oprotection by caveolae is directly coupled with the regulation of IL6/STAT3 signaling in muscle cells and that this regulation is absent in Cav3-associated dystrophic patients.
Document type :
Journal articles
Complete list of metadatas

Cited literature [37 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-02129168
Contributor : Gestionnaire Hal-Su <>
Submitted on : Tuesday, May 14, 2019 - 4:25:51 PM
Last modification on : Thursday, May 16, 2019 - 4:06:51 PM

File

s41467-019-09405-5.pdf
Publication funded by an institution

Identifiers

Citation

Melissa Dewulf, Darius Vasco Köster, Bidisha Sinha, Christine Viaris de Lesegno, Valérie Chambon, et al.. Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nature Communications, Nature Publishing Group, 2019, 10, pp.1974. ⟨10.1038/s41467-019-09405-5⟩. ⟨hal-02129168⟩

Share

Metrics

Record views

101

Files downloads

75