Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells - Sorbonne Université
Journal Articles Nature Communications Year : 2019

Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells

Abstract

Caveolin-3 is the major structural protein of caveolae in muscle. Mutations in the CAV3 gene cause different types of myopathies with altered membrane integrity and repair, expression of muscle proteins, and regulation of signaling pathways. We show here that myotubes from patients bearing the CAV3 P28L and R26Q mutations present a dramatic decrease of caveolae at the plasma membrane, resulting in abnormal response to mechanical stress. Mutant myotubes are unable to buffer the increase in membrane tension induced by mechanical stress. This results in impaired regulation of the IL6/STAT3 signaling pathway leading to its constitutive hyperactivation and increased expression of muscle genes. These defects are fully reversed by reassembling functional caveolae through expression of caveolin-3. Our study reveals that under mechanical stress the regulation of mechan-oprotection by caveolae is directly coupled with the regulation of IL6/STAT3 signaling in muscle cells and that this regulation is absent in Cav3-associated dystrophic patients.
Fichier principal
Vignette du fichier
s41467-019-09405-5.pdf (3.95 Mo) Télécharger le fichier
Origin Publication funded by an institution
Loading...

Dates and versions

hal-02129168 , version 1 (14-05-2019)

Identifiers

Cite

Melissa Dewulf, Darius Vasco Köster, Bidisha Sinha, Christine C. Viaris de Lesegno, Valérie Chambon, et al.. Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nature Communications, 2019, 10, pp.1974. ⟨10.1038/s41467-019-09405-5⟩. ⟨hal-02129168⟩
794 View
125 Download

Altmetric

Share

More